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FINAL REPORT ON THEORETICAL STUDY
OF SINGLE AND MULTIPLE SCATTERING BY CYLINDERS

1. INTRODUCTION AND SUMMARY

In this report we present theoretical results obtained in

the subject contract in the areas of single scattering and

absorption of electromagnetic radiation by arbitrarily oriented

conductive fibers, and in radiative transfer by large aggregates

of such fibers.

It has been determined that, in the case of single scattering

and absorption, the theory in its present form is capable of

producing reliable results over a very wide range of length-to-

wavelength ratio. An asymptotic expression is given for the

backscatter cross section in the large length-to-wavelength ratio

limit. In the small (Rayleigh) limit, it is shown that a previous

theory by two of the authors is in agreement with the more

complex present theory. Two classes of cases have been identified

in which the present theory is in error. In practical computa-

tions, these cases can be easily avoided without substantial loss

of information.

The detailed differential scattering cross sections have

been appropriately averaged for input to the Radiative Transfer

computer program. Representative results are presented in this

report. The program has been tested in various limits including

isotropic scattering over a wide range of optical depths. These

results were found to be in excellent agreement with published

values.
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2. ELECTROMAGNETIC PROPERTIES OF CONDUCTIVE FIBERS

Basic Theory.

This theory is based upon a variational procedure first set

forth by Tai for perfectly conducting wires, 1 and later extended

to the case of finite conductivity by Cassedy and Fainberg, who,

however, considered only broadside incidence. 2  In the present

theory, scattering, absorption, extinction, and radar cross

sections are calculated for arbitrary angles of incidence. The

results can then be averaged over all angles of incidence to

obtain results for a cloud of randomly oriented particles.

Consider a plane electromagnetic wave incident upon a

cylindrical wire of finite conductivity at arbitrary angle of

incidenceOi , and arbitrary polarization angle, P , as shown in

Fig. 1. Assuming the wire is sufficiently thin for the current

"* to be radially symmetric, one may consider the current as a

current filament I(z) along the axis. Since the wire is assumed

*to be thin, only the component of the electric field parallel to

* the axis will stimulate a response, and the integral equation for

- the boundary condition at the cylinder surface may be written

E sin e i cosi e j k z c o s e i . I(z)Z

1 d1d ' 1

ZWh 2 -jkR+ f j Tk f tz 1(Z b _)e zl
+ 0r 4w h k Z k z' )

Here, Z is the skin impedance per unit length of the cylinder,

relating 10 to Ez , and is given by3

z =  (2)
2ra(a + jt,, )(g

where

W 2 0. - i ;) + O (3)
S[(o
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Io(ga) and I1(5a) are modified Bessel functions. It may be noted

. that the real part of g 2 may become important in the visible

*region. In Eq. (1)

•r 0 /Co is the characteristic impedance of free space, and

R (z-z') 2 + 4a2 sin 2 (--')
2

A stationary homogeneous functional expression can now be

constructed for the current in terms of the backscattered amplitude

S. giving

hd h ( + z  
dz' dz - Z (z)dz

Zfr fI z)I' R 4jf
S

k sin 0 i  I) jkz "s 9i dzj (4)

*For the current function we employ a series of harmonic terms. i.e.,

I(z) = 0 AnfnZ) + Bnfsn(z)} (5)
n=l

Here

fcn(z)= cos nkz cos nqx cos n cox nqkz (6)

and

f s n (z) sin nkz sin nqz - sin ns sin nqkz , (7)

* where q = cos 9 i and x = kh, h being the cylinder half-length.

.* This current function is summed over the number of terms appro-

* priate for the ratio of cylinder length to wavelength of interest,

generally N 2h/. For n = 1, the current function becomes

. identical to that used originally by Tail and Pedersen 4 . Note

* that both fcn (the even functions) and fsn (the odd functions)

'- vanish at z = + h, which is appropriate if the current is to be

zero at the ends of the fiber.

10
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When the current function is substituted into Eq. 4, the

following expression results:

N

2 >)AB' (')+Y~~-
JA+cn Xcn )  nn.csn Xcsn ) + n21) sn Xsn )

N ~ ('cm-\I ) +A B ~ - ) +A Bn(-r  -xsnmm IA m (cnn cnm+ n B (cnsm cnsm m n sncm sncm

[N 1
+ B .B . . ),, ( A + B g ) I

n m snm snmJ,, n= 1 n cn n sn j(8)

Here the terminololy of S's. X's, and y's follows the previous
terminology of Tail, Cassedy and Fainber& 2. and Pedersen 4 and is

as follows:

h= k sn~i  I(z~e k z cosOi
ks inoifh f C (Z) dz (9)

- h ,

9 - k sin0i f ( (z)eJkZcosOi dz(
.s 2 (10)

c n h 2 ( Z) d z

h f 2

s(Z) (2)

X _ 4jZJf (Z)f (Z) (13)cnm -h cnlcn (13)

X 4wjZ f (z) f (z.) d
sni ? hfsn Sill (14)

: -X 4 -_LjZ .
,'... f (z)f (z)dz (15)

nr) h cm Sn
/

" ;. 11
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,L,7

k 2 Y h h / \ -jkR
do f (z)f (Z') + L dzdz' "6)

C 2W-' rJ cc C 2z eI Rzz 1
0 -n-h k k

k ZTr h h / 2k o (z e dzdz' (17)
8 Z,, 4f (z (Z' 4- +k R '

0 -hhk~ z

1s =o- f f d ff (z)f (z') /+ R e"
0 -h k 3z'

k l h -h f(z)f(Z' - 1 a e (
T If jdoJhf , + dzdz, (19)

0 -h-h s sn k z

s df 0 (z)f (z') + dzdz (20)
cmsn = f h-h cm sn k 2 R

In the preceding equations, fcn(z) and fsnz) are given by

Eqs. (6) and (7).

Either by odd function considerations or by more elaborate

mathematical arguments it can be shown that the integrals of

Eqs. (15) and (20) are identically zero. The remaining integrals

have been evaluated in closed form, and the results listed in an

earlier report. 4

After simplification, Eq. (8) becomes

N ( N
n -cn ) + B n -Y n -fl + IA A ('r -Kn snm= n ml crm kcnmn

-+ B B ( xnm ks )]I gn rsnn snm (Angcn Bn sn

By the variational technique, the constants An and Bn may

now be evaluated by setting

12
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8- 1) =

43A S (22)
n

and

41) = 0
aB3 S (23)

n

Equation (22) then yields

N N

I ng cn n sn[Cn C1 E ( cnrn cnmJ

nv I

N
A - + B X + A Z (A-AS I n cn cn n sn sn n n- cnm

nn

Bn m snrn snm - (24)

while Equation (23) yields

N N2 t~~( ngn + B3 g )(snk)+ Bm -

. n n sn) [ 4 sn+ m snm snm)

n. 1 tn: 1

N
-2g [A(, 4 + B (y -K + (AA ,

sn In cn n sn sn ( n nm
ni* n

t13 B (n in Snin snm) = 0 (25)

Equations (24) and (25) are non-linear and, therefore, it is

extremely difficult to solve for the An's and Bn's. To avoid the

non-linearity of Eqs. (24) and (25), the following procedure

was used. By multiplying each term in Eq. (1) by

" h

.Lh fsm(z)dz, 13
h 1

................................ *......,-

" .; -. ..; .' -i "; . -'i ...' ..'. .' .. . -'i .' -; i ---. i -. ,; ' 2 > ' ; -. .> .i ' .-' i '; ' .-' '- .-- '- ,' < ' -' -" .i ' i ' < .- -. -. '- .'- .' .- . < ..v , .



where fe, (z) dz, is given by Eq. (6). we obtain

N
(E co Yk FA (1 (26)(EoCOSio gcm n=1 n (26)

Similarly, by multiplying each term in Eq. (1) by

-h
" h fcm(z)dz,

where fsm (z) is given by equation (7), we obtain

S )gsm= B (Ysnm-snm)  27)• I° n=1

Since scm is real and 8am is imaginary, while Ycnm, Ysnm,

kcnm. and ksu, are complex. Eqs. (26) and (27) can be rewritten

in the following set of four linear equations.

N
4- E Cos

0 _ ecm=r [Re(A )1m (Ycnm - )nk 10 n=1

+ Im (A)-Re (in -X)] (28)

N

0 =nXl[Re(An)-Re(cnm-\cnm)-Im(A n ) .Im(- cnm-X cnm)] (29)

.N
n-- n snm snmm

Tik I 0

- Im(B n )Im(Y -X  (30)
and

N
0 = [ IIRe(B ).m(ysnm -snm)-Im(Bn) .Re(Ysnm-Xsnm) ] (31)

n=1

14
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If Eq. (5) accurately represents the current in the cylinder,

then for a given length cylinder, there should be a value of N

for which the values of the An's and Bn's converge as more terms

are taken. Eqs. (28-31) were programmed for broadside incidence,

but showed no convergence for even the smallest values of cylinder

length. It was, therefore, concluded that the series formulation

(Eq. 5) is not an appropriate form for the current function.

Next, a single value of n was chosen so that n - Integer

(kh + 1). Curves for differential cross section and back-scatter

cross section were computed and plotted for large values of kh.

These graphs showed an unrealistic number of resonances in the

differential cross-section and the back-scatter graph did not

agree with existing data. It was, therefore, decided to re-

examine the simpler current function of Tai where n = 1, using the

impedance Eq. (2).

When n 1, Eq. (5) becomes

I o1 [fc(z) + A fs(z)]

where

fc(z) = cos kz cos qx - cos x cos qkz

and

fs(z) = sin kz sin qx - sin x sin qkz

By means of the variational technique, A is determined to be

A C c (35)
"' -\ )9c t s_ S)

where g , g5 , kc, Xs, yc and y. are given by Eqs. (9), (10).

(11), (12), (16) and (17), respectively with n = 1. Having deter-

mined A, the general far field scattered amplitude can be written

as

15



S C COSQ X (sin xco6px-p cos xsinpx)(y-,) 1- C

- cns x (q sin q x cos px - p cos x sin px)I.(q 2 _ P2

+j gs sin g'. (p sin x cos px - cos x sin px)

(Ys -XS) t(1 - p)

(sinp2) (p sin qx cos px - q cos qx sin px) (36)
(q -p )_

where p = cos 0, B being the scattering angle.

By definition, the differential scattering cross section is

then given as

R 2 Eso 2

..- (37)i1 0 2

S 5(0, j
k

- The total scattering cross section

" = J- e SAO sin OdO (38)k 0Z

The extinction cross section is defined by the well-known forward

amplitude theorem as

4_ Im [S(n - 0 i , 0i)1 (39)

s k k2

16
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- The absorption cross section is just the rms power absorbed in

the scatterer divided by the rms intensity of the incident beam.

The rms power absorbed in the wire is given by

P Re(Z) I(z) dz

and the rms intensity of the 0 component of the incident beam is

E 2
I o

so that the absorption cross section is given by

Zri Re(Z)f i }
a a E Jh I(Z) dz. (40)

0 -h

Finally, the radar cross section is defined to be

- ORa = 4!T a( 0i, 0i )
RCS 4 06,O

41T 2 (41)

Equations (37-41) are for polarization in the k-Z plane, e.g.

p= 00.

The results achieved by using the above equations with n = 1

will be discussed in the following section. It appears at this

- time that this theory may be valid for kh values much larger than

50.

17
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3. RESULTS

As discussed in the preceding section, the use of a Fourier

series representation (Eqs. 5, 6. 7) for the current function

resulted in the lack of convergence of the series. Considerable

effort was expended in the analysis and this result was, of

* .course, disappointing.

After having determined that the above non-convergence

* property exists, it was decided that the a - I term of the current

function, e.g., Eqs. (32). (33), and (34), would be utilized in

conjunction with the surface impedance function of Wait given by

Eq. (2). These expressions were substituted in Eq. (4), and the

variational technique, Eq.(22), with B n = A was utilized to

obtain the differential scattering, orientation averaged extinc-

*tion, scattering, and absorption cross sections, as well as the

- radar cross section.

The objective of this analysis was to determine the range of

parameters over which the simplified current function could be

utilized. Questions to be answered were:

(a) Over what range of kh is the theory useful?

(b) In the limit of very large kh. do the differential
scattering patterns give reasonable results?

(c) Assuming that the theory is well behaved in the
kh >) I limit, can one obtain simplified asymptotic
expressions for the various cross sections?

(d) How do these asymptotic expressions compare with
those which can be obtained from infinite length
cylinder calculations?

(e) Do the results agree with Rayleigh theory in the
appropriate limit?

18
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In the remainder of this Section, we laresent results which

demonstrate good asymptotic behavior in the large kh limit, as

well as good quantitative agreement with published experimental

data and with Rayleigh theory.

3.1 Differential Scattering Cross Section.

In this sub-section we present computed curves of differential

scattering cross section per square wavelength (Odiff/).2) as a

function of scattering angle 0. It is important to note (see

Fig. 1) that the scattering angle is measured with respect to

the cylinder axis, as is the angle of incidence 01. In all

cases, the electric field is in the plane of the incident k

vector and the cylinder axis.

In Figs. 2 through 9, the incident wavelength is 3.14 mm

and the cylinder radius is 3.0 micron (ka = 6 x 10-3). The

electrical conductivity is 3 x mho/m. These parameters are

representative of graphite fibers illuminated by a 3 mm plane wave.

3.1.1 Behavior as a Function of kh.

Figures 2, 3, 4 and 5 show the behavior of the scattering

pattern for three values of kh. where h = half length. In

Fig. 2, kh = 1. This particle should, therefore, scatter like a

simple dipole and we see from the fifnre that this is indeed so.

Note that, even though O i = 300, the scattering displays a single

broad lobe which is symmetric and has a maximum at 900, which is

perpendicular to the axis.

In Fig. 3, the length has been increased from 1 mm to 5

mm, corresponding to kh = 5. We see that, in this case, the

scattering pattern is more complicated. We still see a little

bit of the symmetric (dipole-like) scattering at 900. This is in

the intermediate range of kh. The pattern is largely symmetric,

with the major lobe appearing in the vicinity of 1800 - 0i 1500.

19
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Ymax

Theta Inc(deg)- 3

RadIU3(M)- 3.OOE-06
Length~m)-m 1.OGE-03
Lamda(m)- 3. 14E-03
kh- i.OEe+00
Cond. (mho/m)- 3.00E+04
Ymax- 2.71E-05

0 90 so

Figure 2. Differential Cross Section/Lambda2 for Si =300;

kh 1
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Ymax

Theta Inc(deg)- 30

Radlua(m)- 3.OOE-06
Length(m)- 5.OOE-03
Lamda~m) 3.14E-03
kh- 5.OSE+0
Cand.Cm o/ )-3.OOE+04 /
Ymax- 1.73E-04

so9 180

Figure 3. Differential Cross Section/Lambda2 for ei 300;
kh -5

21

*. . . . .. . . . . . .- . . . . . *...- .- * .*..-- - . - ..-.** .* . * . *.*..J - A * 6~



YVax

Theat, tnc(deg)- 30

Radtus(m)- 3.OOE-06
Longthcm)in 1.OGE-02
Lamda~m)- 3.14E-03

kh .00E+01I
Cand.(mho/m)"" 3.OOE404
Ymaxu. 6.26E-04

090 180

F~igure 4. Differenitial cross Section/Lambd*2 for Oj 300:
kh 10
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Theta incdeg)- 301

Radtu3(m)- 3. OOE-06/
Lamda~m)- 3. 14E-03
Ccnd. (mho/m)- 3.OOE+04

YMax- 6.26E-04

kh-10

I//i 5

90 160

* Figure S. Composite Differential Cross Section/Lambda2 for
kh 1. S. 10 and B1  300
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Note that, in the case of kh >> 1, the scattering amplitude is

constant in the axisymmetric cones whose included half angle is

* 0. the differential scattering angle of the figures. Therefore,

the differential scattering cross section at e=180-e i is the

same as that at 0 = 1800 + Oi. But, this latter scattering angle

is the direction of the incident k vector, and therefore, is the

forward scattering direction. It is well known that, for large

kh, we should expect to find a major lobe in the forward direc-

tion. Therefore, the lobe at 0 = 1500 qualitatively agrees with

what we would intuitively expect for a moderately large value of

kh and small ka.

If we next increase the length so that kh - 10 (a value well

into the kh >> 1 region), we see in Fig. 4 that the major lobe

of Fig. 3 develops into a much more pronounced peak in the

vicinity of 0 - 1500. This shows that the forward (0= 1800 + O i )

and specular (0= 1800 - Gi) scattering patterns are fairly well

developed.

Figure 5 is a composite of Figs. 2, 3. and 4, with all

data shown in correct numerical scale. It is interesting to note

that the peak for kh = 10 is closer to 1500 than that for kh 5,

which is in agreement with our expectations.

3.1.2 Behavior as a Function of Bi.

In the next set of Figs. (6 through 9), we fix kh at a

value of kh = S and choose three angles of incidence: 9 i = 300,

600, and 900.

The scattering pattezt of rig. 6, for which 9 i = 300. is

t* that of Fig. 3 and is repeated for continuity. We see in Fig. 7

that. when O i is increased to 600 , the major lobe shifts to B

180 - 600 = 1200, which is just what we should expect.

24
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Theta Inc(deg)- 30

RadIU3(M)' 3.OOE-06 /
Length(m 5.OOE-03
Landa Cm) 3.14E-03
kh- 5. OOEi-00
Cond.(m o/ )-3.OOE+04

Ymax- 1.73E-04

090 180

Figure 6. Differential cross Section/Lambda
2 for kh 5;0=30
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Theta inCdeg)- s

Radfustm)- 3.OOE-06
Longth(m)- 5.OOE-03
Lamdacm)- 3. 14E-03
kh- 5.OOE+00
Cond. Cmho/m)in 3.00SE+04
Ymuxin 1.20E-03

Figure 7. Differential cross Section/Lambda2 for. kh 5; 9j 600
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At O i  900 (Fig. 8), we have broadside incidence and the

major lobe has shifted to 900 as expected. The pattern is

* symmetrical about 900 as it should be.

A composite of the preceding three curves is shown in

Fig. 9, which demonstrates how significantly the magnitudes of

the scattering cross sections differ as a function of angle of

incidence.

3.2 Backscatter Crosi Sections.

We have made a number of comparisons between the results of

the present theory and available measurements. The data presented

in this section are limited to moderate values of kh ( 10. It is

unfortunate that more experimental data are not available. In

.. particular, we have found no experimental data for lossy cylin-

ders. Available experimental data with which we can compare

appears to be limited to the backscatter cross sections of

perfectly conducting, but thin (ka < 1) wires. Notwithstanding,

considerable insight can be gained in the foregoing comparisons.

3.2.1 Radar Cross Section vs. Aspect Angle.

In this sub-section we compare the results of the present

theory with experimental data taken at Lockheed Georgia 5 for

tungsten wires in the resonance region. The measurement frequency

was 9.375 GHz. Wire diameters ranged from 1 to 3 mils. The skin

depth of tungsten is 0.04 mils at this frequency and we can.

therefore, consider the conductivity to be infinite for Figs. 10

through 16. In these Figures, the solid curves are our theoretical
0

results and the dotted curves are experimental data. These

Figures are plots of backscatter cross section per square wave-

- length vs. aspect angle with the E vector and the cylinder

axis in the rotational plane. Note that 900 and 2700 represent

.' broadside incidence, while 00 and 1800 represent end-on incidence.
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*Figure 8. Differential Cross Section/Lambda 2 for kh -5; O01 900
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Figure 10 corresponds to the onset of the first (~ half

wavelength) resonance. Note that the angular symmetry of the

data is off by 10 to 15 degrees. If this were corrected, reason-

ably good quantitative agreement would be observed.

Figure 11 corresponds to the first resonance (/X = 0.480)

and we find excellent agreement between theory and experiment.

Figure 12 ( Z/ = 0.496) shows good experimental symmetry and

agreement within 10%. In. Fig. 13, in which 0. = 0.525, the

agreement is better than 10% when corrections are made for

experimental assymetry.

Note in Fig. 14, for which Z/X = 0.854 the broadside (900)

peak observed in Figs. 11 through 13, has split and the RCS is

reduced. Although the features of the theory vs. experiment

agree, the quantitative agreement is only within -25% to 30% in

* Fig. 14.

Figures 15 and 16 correspond to /k -= 0.929 and k/, = 1.051,

respectively. In Fig. 15, the experimental amplitude assymetry

is about 12%, whilt the agreement between theory and experiment

* are within about 18%. In Fig. 16, a new maximum has formed at

900 and 2700. The entire pattern is reduced and only moderate

(20 to 25%) theoretical experimental agreement is observed.

" 3.2.2 Backscatter Cross Secto.n vs. kh.

In this sub-section, we first compare the results of the

present theory with some eazly experimental measurements on

* highly conducting wires by As and ScLritt 6 . 7 with the results of

the present theory. Figure 17, the experimentally observed

backscatter cross section per square wavelength is plotted as a

function of kh for three values of ka. Note that an error exists

• in this Figure. The solid line (ka = 0.132) and the dotted line

*(ka = 0.026) were obviously inadvertently interchanged in the

30
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original paper by As and Schmitt and the error was reproduced in

King and Vu.

Figure 18 shows the results of the present theory for the

same parameters as those of Fig. 17. Note that, except for the

deep minima of Fig. 18, excellent quantitative agreement is

demonstrated. The existence of these minima will be discussed in

Section 3.5.

Figure 19 shows the behavior of the backscatter cross

section vs. kh for four electrical conductivity values ranging

from 100 mho/m to infinity. Note that (a) as we would expect,

the backscatter cross sections decrease with decreasing conduc-

tivity, (b) the plateaus degenerate to simple maxima, and (c) the

three very deep minima persist even for small values of electrical
0

conductivity.

3.3 Very Large Values of kh.

We next investigate the behavior of the theory when kh

becomes very large. The purposes of this are (a) to test the

stability of our solutions in the very large kh range, (b) to

determine, if possible, asymptotic expressions for the cross

sections, and (c) to see if the solutions appear to be reasonable

on physical grounds.

In Figures 20 and 21, which are analogous to Fig. 17, we

have plotted (linear plot) backscatter cross section per square

wavelength vs. kh over the range 0.25 ( kh j 100. In Fig. 20, ka

10 - 4 and in Fig. 21, ka = 10-3. We find that

(a) the backscatter cross section appears to be well
behaved in the very large kh regime

(b) The minima of Fig. 17 persist to at least kh 100.
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*Figure 18. Calculated Backscatter Cross Section/Lambda2 for
Infinitely Conducting Cylinders at Broadside Incidence
as a Function of khD kh S.10
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An analysis of Figs. 20 and 21 gives the following asymptotic

relationship:

0RCS = 1 ( kh )2 (42)
4 Qn(ka)

Another test of the theory is to observe the behavior of the

differential scattering cross section in the very large kh

limit. The results of these computations are given below.

Figures 22, 23. 24 and 25 show the behavior of the differen-

tial scattering cross section per square wavelength for various

values of kh. The cylinder orientation is broadside, with E

parallel to the cylinder axis. These values are kh - 10, 15,

25 and 100. Note that, as kh is increased, (a) the width of the

central maximum decreases, (b) the lobe structure becomes compres-

sed, and (c) unexpected minor lobes appear near 00 and 1800.

Except for (c) above, the curves of Figs. 22 through 25

appear very normal and well behaved. Also, we have shown that

". the main lobe structure agrees exactly with the usual (sin2kh/2kh)
2

representation.

Figures 26 and 27 represent an interesting and unantici-

pated result. First, note that the angle of incidence is 400 (or

500 off broadside). In Fig. 26 the total length (2h) of the

* cylinder is an odd multiple of a quarter wavelength. Specifically,

the total length, Z = 2h. is given by 9- 103.5 (X/2). Although

points are computed for only every degree of scattering angle, it

can be seen that the scattering pattern is well behaved, with a

large peak in the forward direction*.

*As was pointed out earlier in this report, the scattering is the

same at the angle 1800 + 0i as at 1800 - *i. Therefore, the

large peak at 1800 - ei can be Interpreted as forward scattering

as well as scattering at 1800 - 0i "
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Length(m)- 3118 -01
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I II
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Figure 22. Differential Cross Section/Lambda2 for an Infinitely
Conducting Cylinder, Broadside Incidence and kh 10
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kh- 1.5 E i01
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0 0 180

Figure 23. Differential Cross Section/Lambda 2 for an Infinitely
Conducting Cylinder, Broadside Incidence and kh 15

46

S.................



Ym ax

Theta tncdeg)- so:

Rbd 1 u3 (m)- 1.56E-05
Length(m)- 7.9 E-01
Lamda(m)- 1.9 E-01

k. k2.t E+01I

Cond.(mho/m)- Inf.ifte
Ymax- 2.94E-01

I '

"

/

90 180

po

Figure 24. Differential Cross Section/Lambda 2 for an Inf initely
Conducting Cylinder, Broadside Incidence and kh 25
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Figure 25. Differential cross Section/Lambda 2 for an Inf initely
Conducting Cylinder# Broadside Incidence and kh -100
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Figure 26. Differential Cross SectionlLambda2 for an Infinitely
Conducting Cylinder with 9j 400 and kh =163
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This behavior of the scattering pattern is typical of nearly all

of the kh >> 1 scattering patterns which we have plotted. We

have, however, found an exception to this behavior. It occurs

within a very narrow range of kh when the total length is

approximately equal to any (even or odd) multiple of a half

wavelength. When such multiples occur, i.e., Z = 2h = NX/2 when N

>) 1, we find a large peak (equal to the forward scattering peak)

in precisely the backscattering direction e = B i .

This behavior occurs for all angles of incidence for which we

have made computations. An example of this is shown in Fig. 28.

This anomalous behavior occurs for less than 5% of the cylinder

lengths if we continuously vary cylinder length (ei # 900 and kh

>>) 1) and observe the scattering in the backscattering (9 = 9i)

direction. A further discussion of this anomaly will be given in

Section 4.

3.3.1 Averaged Extinction. Absorution. and Scatterina Cross

Sections vs. Wavelength.

In the case of transmission of electromagnetic radiation

-* into clouds of randomly oriented conductive fibers, one is

interested in the orientation averaged values of the extinction,

absorption, and scattering cross sections. In particular, the

cross section per unit volume of the particle is of importance.

We have developed a computer program for the calculation of the

above cross sections as a function of the wavelength of the

incident radiation. The fixed parameters in the calculation are

fiber radius, length, and conductivity. One hundred and twelve

such sets of plots have been produced using the impedance of

Eq. (2) and the current function given in Eqs. (32). (33) and

(34). These plots are being forwarded to Dr. Jay Embury at C.S.L.

As examples of the above mentioned plots. Figs. 28, 29, and

30 predict the spectral characteristics of thin graphite fibers

in the spectral range 0.1 micron j X 100 microns. The fixed
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*parameters are radius =0.1 p, conductivity 3.3 x 104 sho/rn,

and total length = 1 p, 3.3 p, and 10 p for Figs. 28, 29, and 30,

respectively. The dashed lines correspond to scattering and

absorption in the Rayleigh limit. Note that the various electro-

magnetic cross sections are averaged over particle orientation.

It should also be noted that the orientation averaged scattering

and absorption cross sections are computed by averaging these

over all aspect angles and ( in the case of scattering) all

scattering angles, as shown by Eqs. (38) and (40) . However. the

extinction cross sections are computed using the Forward Amplitide

theorem Eq. (39). At any wavelength, the sum of the scattering and

absorption cross sections should, of course, be equal to the

extinction cross section. Since the extinction cross section is

computed by independent means, a good check on the theory is to

* determine whether or not the equality Babs + asca 1 ext prevails.

Indeed, it can be seen by inspection of the three figures that the

equality does exist throughout all but the shortest wavelength

range of these.

The purpose of including three figures is to demonstrate the

behavior of the cross sections as the fiber length is increased

f r om one micron to ten microns . In Fig. 28, we see that the

absorption cross section becomes maximum at about X = 10 p and is

more than two orders of magnitude higher than the scattering

cross section for wavelengths longer than 10 p.

* In Fig. 29, the length has been increased from 1 p to 3.3 p

and we see that the absorption reaches its maximum at X. = 20 to

30 microns and the scattering cross section is greater than that

of Fig. 28.

Figure 30 shows the behavior when the total length is

increased to 10 microns. Here, we see that the absorption (and

extinction) are fairly constant over the range 1 p X 100 p.
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The above Figures show that, increasing the length of the

fiber from 1 p to 10 p has improved the absorptive (and extinction)

properties of the fiber at the longer infrared wavelengths. It

is also seen that, as fiber length is increased, the ratio of

scattering to absorption cross sections increases (as we should

expect).

It is important to note that the numerical integrations for

1 sca and Babs were carried out in 50 increments in both 0 and

0 i . This rather coarse increment was necessary because of

computer memory limitations. As kh becomes larger, the scattering

patterns become more peaked, and the finer the angular integration

increment should be. The use of a 50 increment is probably the

reason for the inequality of 6 sca + abs = Fext. This tentative

conclusion is reinforced by noting that the exact specular peak

at 0 = u - G i is always included in the angular integration of

the differential scattering cross sections, and it is therefore,

* "weighted more strongly as the width of the peak approaches the

angular integration increment. We plan to compute a limited

number of plots similar to those of Figs. (28), (29), and (30)

using 10 increments, and to compare the short wavelength behavior

* with that of Figures 28, 29, and 30.

Finally, it is interesting to note that, in the long wave-

length limit, previous results 8 ,9 based on Rayleigh scattering and

* absorption (dashed line) are in close agreement with those of the

present theory.

3.4 Discussion.

The primary purpose of our theoretical work on scattering

and absorption by cylinders has been to include ohmic losses in

the historic formalism developed by Tail, Cassedy and Fainberg 2 ,

" and others. The reason for this has been to provide a useful

.' procednre for the computation of scattering, absorption. and

extinction cross sections for lossy fibers. It turns out that
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essentially all of the available experimental data with which we

can compare the theoretical results involves wires having a

conductivity so high that, for all practical purposes, it is

infinite. This is why a large portion of the data presented in

this report involve infinitely conducting fibers.

The details of the various scattering patterns which we have

investigated obviously depend to a very high degree upon the

current function. The absorptive properties, of course, also

depend upon the current function. We believe that good behavior

of the scattering patterns in a given regime justifies the use of

the present current function in that regime for the calculation of

absorption as well as scattering. To say this in another way,

a careful analysis of the scattering predictions of the theory is

a powerful tool in determining where the use of the present

theory is acceptable and where it is not. In addition, as

mentioned in Section 3.2.3, the conservation of energy criterion

(Bsca + aabs = aext) also serves as an important validation tool.

With regard to the data which we have included in the

preceding pages, we have the following specific comments:

(1) The features of the differential scattering data of

Sections 3.1.1 and 3.1.2 (Figs. 2 through 9) appear to

be as one would expect, with the forward scattering

lobe becoming more pronounced as kh-10. A somewhat

disturbing feature of these data is the presence of

rather larger lobes near 00 and 1800 (end-on) than we

expected to find. We have found, however, that, as ka

is made extremely small, these lobes become smaller.

(2) The data on backscatter cross sections is very instruc-

.tive. Our predictions agree very well with the Lockheed

measurements over the (rather small) range of 0.480

Z/X £ 1.051 in Section 3.2.1 (Figs. 10 through 16).
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The quantitative and qualitative details of the theory

vs. measurements are in good agreement.

In Section 3.2.1 very good agreement is demonstrated

between theory and experiment for the three ka values

of Figs. 17 and 18. However, note that the deep minima

appearing in Fig. 18 are definitely incorrect. These

zeros in the backscatter cross section occur for

arbitrarily small ka values, and therefore, signify

zero values of S(O), the forward scattering amplitude.

This, in turn, forces the conclusion that the total

cross section is zero at these values of kh, which

cannot be.

The above problem can be directly traced to the current

function of Eqs. (32), (33), and (34). If we integrate

the current function over the length of the wire and

set the integral equal to zero (e.g. net current - 0),

we find that the relation tan(kh) - kh obtains. We

have done parametric plots of this equation and find

that the zeros of Fig. 18 occur precisely at the values

of kh which satisfy the above transcendental equation.

We should note that, in re-reading Tai's paper,l we

found that he had discovered the same problem and

produced the same transcendental equation. This

is a definite limitation of the theory. Aside from

this, we seem to be in good agreement with experiment.

Therefore, taking this reservation into account, the

theoretical backscatter data for various finite values

of conductivity (Fig. 19) have high credibility.

(3) In the case of very large values of kh, we see that the

minima mentioned above persist out to at least kh -

100 (Section 3.3, Figs. 20 and 21), and predictions in

the near vicinity of tan (kh) = kh should be disre-

garded. Aside from this, we find that the theory is
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well behaved for extremely large values of kh for

broadside scattering. An asymptotic expression for

the broadside backscatter cross section vs kh was

derived and is given by Eq. (35).

The calculations of differential scattering cross

section vs scattering angle plotted in Figs. 26 and 27

are very well behaved and produce exactly the narrow

forward scattering lobe which we expected. However, we

have determined (as discussed in Section 3.3) that,

within a very narrow range of ZIX,. a large backscatter

peak occurs at all values of X/.X = N, where N is any

large integer. Since this behavior is essentially

independent of the angle of incidence, we conclude that

it is incorrect and reflects a limitation of the simple

current function which we are using.

(4) The computations plotted in Figs. 32, 33, and 34

(Section 3.4) provide an example of the use of the

theory which we have developed. In order to obtain

accurate results in the larger kh range, we must

obviously use finer angular increments in the integra-

tions to obtain the total scattering cross sections.

We have realized this for some time and are taking

steps to obtain higher computational speed and more

needed computer memory. It is particularly interesting

to note the good agreement in the Rayleigh region

between the early calculations of Pedersen and the

present theory.

It is recognized that realistic calculations in the

infrared and visible portions of the spectrum require

the use of established optical constants (complex

refractive index) and appropriate modification thereof

in the very thin limit of particle radius.
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In conclusion, we have found surprisingly good agreement between

the theoretical predictions and available experimental data. The

calculations are well behaved out to very large values of kh

where we find no onset of instability. Two limitations of the

theory were identified. These occupy only a very small fraction

of the kh values in any given kh range and such kh values can be

avoided in future computations without serious limitations of the

overall information which one can obtain. We believe that theory

as it now stands is, with these specific restrictions, applicable

to many problems of more than passive interest to DoD.
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4. RADIATIVE TRANSFER IN CONDUCTIVE FIBER CLOUDS

4.1 Basic Theory.

The purpose of the radiative transfer portion of the program

is two-fold. First, we are developing a simple, efficient computer

program to handle the numerical computation of radiative transfer

in slabs for a wide range of scattering/absorbing particle

parameters, and for quite general particles. Second, we are

integrating the RT program with a computer program that treats

the scattering and absorption specifically by lossy conductive

fibers, in order to determine the overall electromagnetic behavior

of such configurations.

The basic RT theory has been described earlier. 1 0 ,1 1  Essen-

-: tially, we are using the van de Hulst doubling method with a Taylor

. series representation for the starting (thin-layer) values of

the transmission and reflection matrices, including up to fourth-

power terms in the optical depth. This innovative treatment

of starting values enables us to avoid the cummulative error

build-up incurred when one begins with infinitesimal starting

layer thicknesses.

In brief, the theory runs as follows. In order to interpret

• the transmission and reflection matrices, which are the basic

quantities computed, consider Fig. 31. The layer of optical depth

x contains a cloud of randomly oriented and positioned fibers (or

other scattering particles). Radiation is incident from outside

the layer, and we characterize the right-going and left-going

parts at any point in the layer by u and v, respectively. The

spatial direction variable has been discretized, so that more

specifically u is an N-component column vector giving the angular

distribution of radiation into the right hemisphere, and similarly

for v. Now u(0) represents radiation incident on the front face

of the layer, giving rise to transmitted intensity

u(x) = T u(O) (43)

and reflected intensity

v(O) = R u(0), (44)
il 61
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Figure 31. Discretized Right-Going (u) and
Left-Going (v) Radiation.

* both of which can be computed once the transmission and reflection

matrices T and R are known.

One begins by evaluating T and I numerically for a layer

very thin compared with optical depth, i.e., x 1< 1, using the

formulas

T I Q x+ (1/2!) (Q 2+ Q22 x2

3 2 2 3-(1/3!) (QI + Q Q +2 Q Q2 +2 Qx" + 12 12 +2 1QI

+ (1/4!) (Q1 4 + Q Q 1 + 3 Q 2 2 1

4 2 4+ 3 QI Q2 QI Q + 3 Q2 Q  Q Q + 5 Q2 5 Q22 Q )x, (45)

R = Q x - 1/2!) (QI Q + Q U ) x

2 2 3 3
+ (1/3!) (Q Q +Q Q + 2 Q +ZQ Q Q)x1 2 21 212

3 3 Q2I 2
-- (1/4!) (Q1 Q2 + Q2 Q 3 + 3Q Q Q + 3 Q Q QI

2 2 3 3 4+ 3 Q QQ + 3 Q 2Q 2 + S Q Q2 + 5Q Q) x (46)
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These equations give a particularly compact method for obtaining

T and R to high accuracy, the scattering behavior of the fibers

themselves enters in the determination of the quantities Q1 and

" Q 2 , which are defined explicitly in terms of the single fiber

" scattering pattern. 1 0

Having obtained T and R for the thin layer. the corresponding

values for layers of arbitrary optical depth are now computed by

successive applications of the doubling equations. Writing T2 =

T(2x), R2 = R(2x), one has

T2 = T (1 - R2) -l T, (47)

R2  i + TR (I - R2 )-1 T . (48)

There are thus one matrix inversion and several multiplications

required at each stage of doubling. The starting layer thickness

should be chosen judiciously in order to optimize the accuracy of

the computationg note that the smaller the initial choice for x,

the more accurate will be the starting values for T and R from

Eqs. (45) and (46) but, on the other hand. the more repetitions

of the doubling equations that will be required, with attendant

loss of precision, in order to attain a given optical depth.

Numerical trials have been carried out which ensure that we work

with near-optimum starting depths.

For the discretization of the radiative transfer equation we

have employed the extended Simpson's 3/8 rule, which can be

derived without difficulty from the ordinary 3/8 rule available

*in the literature. 1 2  As the extended rule is not too well known,

* we state it here:

:.:: f b[
" Zf(Z) (3h/8) f(Z O ) + 3 f(z ) + 3f(z

..- (49)

+ 2 f(z 3) + 3f(z 4 ) +1(z 3 S)] +R 3
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The range of integration is divided into 3s intervals each of

width h, where h = (a-b)/3s, and we choose s odd, so that 3s = 3,

9, 15, 21# .... The remainder term can be estimated by

R3 s = -(h 4 /80) [f(iii) (b) - f(iii) (a)] (50)

- in terms of the third derivatives of the integrand at the end

points.

In the present application, z is identified with p = cos 0.

where 0 is the angle formed by the radiation flux with the forward

direction (x axis in Fig. 31). Thus, T and R will determine

radiation patterns over the discrete set of directions having

uniform increments in cos 0. The extended 3/8 rule enables us to

avoid the equatorial direction 0 - a/2, which can cause numerical

- difficulties. It also permits us to readily adjust the grid

spacing in cos 0, something which is not possible with the more

commonly employed Gaussian quadrature, because of the complexity

*of determining weighting coefficients and ordinates in the latter.

4.2 The Phase Function.

The basic single-particle inputs needed to the RT computer

program are the albedo

scattering cross-section
extinction cross-section (

. and the phase function po (p, p'), obtained by simply integrating

the scattered power p (p, 0, p', 0') over all azimuths 0. 0V.

Here p = cos 0 and 0 are the angles of incidence, and p' = cos

0', 0' the angles of observation.

There are two ways of proceeding, depending on whether or

not analytical expressions are available for the phase function.

* The twc simplest analytical cases are1 3

Po (P. P') = 1 (Isotropic) (52)

and

' Polpp') = [ +p 2 p' 2 + (1-p 2 )(1-p 2 )(l-p' 2 )J, (layleigh Sphere)

(53)
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3 2Po(,P' =  [l+p2 p' + (l- 2 )(1- 2 )(1-O'2 )], (Rayleigh Sphere)

(53)

the latter being appropriate for small conducting spheres with

unpolarized incident radiation. These cases are useful for

verifying the validity and accuracy of the computer programs

numerical results are readily available for them in the literature.

In the absence of analytical expressions the phase function

must be handled in tabular form. Following Ishimaru,1 3 this

is done as follows. For inputs we employ the single-scatterer

intensities S(gi) evaluated at (3s + 1) equally-spaced points

in z. The reflection and transmission matrices R and T will

each have dimensions (3s + 1)/2 x (3s + 1)/2. Note that S(p)

represents the scattered intensity averaged over all scatterer

orientations, for incidence in the direction p = pl= 1 (the

forward direction).

The phase function can now be determined from

P (1,P) = W P (P) P (W) (54)
0"m=O m m m

i.- terms of the Legendre polynomials P.. The latter are determined

in standard fashion using a recursion sub-routine based on the

formulas
po,'-"po = i

Pl = ,

and

Sm+ ( ) 1 L2m+l) Pm()m PmI(;) (55)

The constants W. are given by

w d Pm() S (P) (56)

65

'. "., " " , '. ". •"... . .. ......... ..... .. . ...



and the summation of Eq. (54) is terminated when the V become

negligible. The inteSral of Eq. (56) is approximated using

Simpson's 3/8 rule, Eq. (49), with grid spacing h = 2/3s.

- The doubling method can now be applied to obtain the reflection

. and transmission matrices for layers of any desired optical

length. In order to obtain physical results, matrix elements

must then be weighted appropriately to allow for the specific

* quadrature rule employed. If we define normalizing constants

c(n) (an Un ) , n = 1,2, . O., (3 s + 1) , (57)

where the an are the 3/8-rule weighting coefficients, then the

net fluxes reflected in the back hemisphere, or transmitted in

Ii the forward hemisphere, are given respectively by

(3s+l)
- T1 R(n i) c(n)

(58)

(3s+l)

(= _ T(n,l) c(n)

These equations are for radiation incident normally on the slab,

which explains why only the first columns of R and T are needed.

For isotropically incident radiation, all elements of R and

T would come into play. For the angular intensity patterns, on

the other hand, one has

R(n) = R(n,l)/2 c(l)c(n)

(59)
T(n) = T(n,l)/2 c(1)c(n) , n = 1, 2, ... , k (3s+l)

66

.....................................
.. .- o.

* . *



- 4.3 Orientation Avergeas.

For the conductive fibers, the first step in the analysis

- involves orientation averaging of the single-fiber differential

"- scattering patterns. If p (aP) is a unit vector along the fiber

% axis, with spherical angles Q,. relative to a fixed cartesian

coordinate system, for a linearly polarized incident wave ein

along the positive z direction we have Odiff = Odiff (aQp,,-0),

and the orientation-averaged differential scattering pattern is

given by

0diff (8) = 1 ddiff (X ,3, 0c) (60)
0 0

Note that strictly speaking it is necessary to also average over

the polarization angles of the incident and scattered waves.

* Because we are only interested in scalar intensities, however, it

suffices to choose the incident polarization in the plane of

incidence (plane formed by the fiber and the direction of inci-

dence). The scattered intensity is then taken without regard to

* its polarization. It is not difficult to verify that this

simplication does not affect the angular dependence of the result.

The scattering patterns are actually computed in fiber

*coordinates, i.e., in terms of the angle cos Of = p-kout formed

• .by the fiber and the observation direction kout (0.0). The angle

Of can be expressed in terms of the orientation angles by noting

that

cos Of = sin 0 sin 0 cos (0-a) + cos 0 cos . (61)

We see that the 0-dependence drops out during the integration, so

that the resulting pattern, Eq. (60), is rotationally symmetric.

The short-fiber limit kh << 1 (h half-length of fiber)

*- provides a useful check on the computation. In this limit we can

assume that the axial current induced in the fiber is proportional

to ein.p = sin P and that the corresponding scattered amplitude

is given by ein.p sin Of, so that
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L p sin 0f
2  (62)

dif f 0 in SJf

where ao is the maximum cross section obtained at broadside

incidence and observation. Putting this expression in Eq. (60).

and dividing by a factor of 4 to correct for not averaging over

incident and received polarization, gives finally

adiff/ao = (1/30) (3 + cos2 0) (63)

This 3 + cos 2 0 angular dependence constitutes a new elemen-

tary scatterer for radiative transfer, which might be called the

Rayleigk fiber. Note that it falls intermediate relative to

the isotropic and Rayleigh sphere (1 + cos 2 0) cases.

Numerical computations of orientation-averaged scattering

from perfectly conducting fibers are shown in Fig. 32 for several

*values of kh (for clarity normalized to 4 in the forward direction

p = cos 0 = 1). The uppermost curve is the Rayleigh fiber

pattern of Eq. (63), and one notes that the numerical results
converge smoothly to this limit for kh << 1 (the kh = 0.1 curve,

not shown, is indistinguishable). As kh becomes greater than

* unity a significant peak is seen to develop in the forward

direction, typical behavior for scatterers when dimensions are

not small compared to wavelength.

It is interesting to note that the orientation-average has

been computed by Borison, but for half-wave dipoles (kh - n/2). 14

Upon averaging his results over incident and received polarizations

. one obtains precisely Eq. (63). This does not agree with the

curve of Fig. 32, we believe that Borison's assumption of simple

cosine behavior of the surface current for all fiber orientations

is no longer adequate at kh = w/2.
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PARAMETERS (MKS)

wavelength- 1 .WE-06
kern 1.0E-0l

% onductivity- 1 .OE+0?

MU

Figure 32. Orientation-Averaged Differenitial Cross Sections
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4.4 The Thin-Laver Limit.

Now consider the slab geometry for a cloud of randomly

oriented fibers, as shown in Fig. 33. The cloud has optical depth

x, and one desires to compute the angular intensities transmitted

.' and reflected, T(O) and R(O), respectively, as shown in the

figure.

A simple check is available on numerical computations in the

thin-layer limit x << 1. As shown in Fig. 34, the transmitted

*intensity per steradian in the direction p = cos 0 must originate

in the differential cone of fibers indicated. But, in the

thin-layer limit, the contribution from an element of the cone

will be proportional to albedo a, the phase function p(p), and

exponential factors accounting for attenuation of radiation over

6 the travel path within the slab. Thus, with x' x-ps,

X/ 1x/ -x' -s= eP() ds e C 0 (64)

0

A similar equation can be written down for the reflected intensity,

. and carrying out the integrations gives

e() p() X (1e )X/)/ 1  > (65)

( 1 -P) P < 0

* These last formulas are given by van de HulstlS for the isotropic

case p(W) = li clearly, from our derivation they must continue to

0 hold for arbitrary p(p).

Intensity patterns have been computed numerically for an

optical depth x = 0.1 and the three elementary scatterers,

isotropic, Rayleigh sphere (dipole), and Rayleigh fiber. Results
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Figure 33. Slab Geometry of Fiber Cloud
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Figure 34. Geometry for Thin-Layer ApproxiBatiOn
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* are shown by the points in Fig. 35. The corresponding analytical

* approximations of Eq. (65) are given by the solid curves in the

-figure, and excellent agreement is seen throughout. Incidentally,

* van do Huist gives the theoretical value K -1/4 for the propor-

*tionality constant of Eqs. (64) and (65). We f ind that much better

* results are obtained using a somewhat larger value obtained by

matching Eq. (65) to the computed point for normal reflection for

transmission (p =±1). For example, for isotropic scatterers

the two computations then agree to four significant figures,

* excepting only the point p =-.04762, where agreement is slightly

poorer.

4.5 Numerical Results.

A plotter routine has been developed for the reflected and

transmitted intensity patterns, and some typical results will

* now be shown for normal incidence on slabs of optical thickness x.

In Fig. 36 angular patterns are shown versus observation

-direction p cos 0 for lossless isotropic scatterers. For

*this case s =9, and R and T are of dimension 14 z 14. Note

that our quadrature scheme avoids the equatorial plane p - 0,

where analytical difficulties arise (the curves are easily extra-

-polated if desired, however). In the transmitted patterns the

coherent field, that portion of the originally incident beam

which has survived, is represented by a discrete version of

the delta function (sharply rising curves near p = 1, truncated

*at unit intensity for clarity). As was observed earlier11 these

results, including the discrete delta function contribution,

exactly satisfy energy balance constraints.

The same computation is carried out in Fig. 37, but for much

*coarser grid spacing (matrix dimension 5 x 5). Aside from the

* obvious change in the discrete delta function contribution,

these curves are seen to be effectively identical with those

of Fig. 36. This demonstrates the stability of the computer
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program with respect to grid spacing at least for this simple

case, and also confirms the ease with which $rid spacing can

be adjusted to fit the problem at hand.

In Figs. 38 and 39 (albedo = 0.8. 0.5 respectively) losses

are introduced, with corresponding reduction in the intensities.

For all of these results, checks with the numerical tables of van

de Hulst1 5 give excellent agreement.

Figures 40, 41 and 42 show the intensity distributions obtained

using the Rayleigh phase function of Eq. (53). and albedos of

1.0, 0.8,. 0.5. Note that there is not too much difference

from the isotropic case. The Rayleigh case differs in that

*single particle scattering is now more concentrated in the forward

and back directions. In terms of scattering angle 0, the single-

particle intensity is given by1 3

3 2

(1 + Cos 0) (66)

the effect of this is evident when one compares the reflection

*" curves, which have become relatively somewhat larger in the

"" back direction (p = -1), although not much change has occurred

in the transmission curves.

In Fig. 43 plots of the transmitted and reflected intensities

. are given for an optical depth of unity, where the single scatterer

is 1) isotropic, 2) Rayleigh sphere. 3) the Rayleigh fiber of

Eq. (63), and 4) the short fiber (parameters as noted in the

figure). Note that, just as was true for the phase functions,

the radiative transfer intensities for the Rayleigh fiber fall

intermediate between the isotropic and sphere case. It is also

interesting that the Rayleigh fiber and short dipole (kh - 0.5)

" results are now indistinguishable, even though their phase

functions are measurably different (see Fig. 32).
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Reflection Transmission

PARAMETERS (MKS)

Wavelength- 1.eE-06
ka- 1.OE-01
kh- 5.0E-01 1-. Isotropic

Conductivity- 1.0E+07
Albedo- 4.1E-01 2. Rayleigh Sphsrp

Optical Depth- 1.0E+00.Dpl

4. Short Fiber

0.1

3394
ft1

0.011

Figure 43. Angular Flux Patterns for Various Scatterers
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Dependence of the IT intensities on fiber length is indicated

in Fig. 44, for fairly highly conducting fibers. From the figure

one can see that both the transmitted and reflected intensity,

integrated over all angles as in Eq.(58), show a mild peak at

- about kh = 3, although the reason for this is not clear.

For fixed fiber length kh = 3, dependence of the IT inten-
sities on optical depth x is shown in Fig. 45. As one would

expect, the reflected patterns increase monotonically with x, at

the same time becoming more nearly isotropic. The transmitted

*patterns show the same behavior in the diffusely transmitted flux

up to about z = 1, with corresponding reductions in the coherent

flux (because of truncation the latter effect is not obvious from

- the figure). With further increases in optical depth the trans-

mitted flux begins to decrease, presumably because scattering and

absorption mechanisms now dominate.

Finally, Fig. 46 illustrates the effect of varying the fiber

conductivity, maintaining a fixed fiber length kh 1 1 and optical

depth x = 1. Both reflected and transmitted patterns are seen to

increase monotonically with conductivity, both also showing signs

-- of saturation for the uppermost curves, which are effectively

approaching the perfectly conducting limit. Again, the curves

- behave qualitatively as would be expected, in view of the fact

that the albedo is increasing toward unity with increasing conduc-

tivity.

The above examples illustrate the usefulness and versatility

of the computer programs. These programs are now sufficiently

* well developed to begin running specific problems of practical

interest to CRDC involving both single fiber scattering and

absorption, and the radiative transfer properties of the corre-

* sponding fiber clouds.
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Reflection Tvbanammiison

PRAMETERS (MKS)

Wave length- 1 .OE-06
kin- 1.OE-01

Conductivity- I .0E+07
Optical Depth- 1.SE+0

-1-.5 0.5
0 MU

Figure 44. Angular Flux Patterns for various Fiber Lengths
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Reflection Transmission

PRAMETERS (MKS)

Wavelength- I.0E-06
ka- 1.0E-01
kh- 3.OE+00

Conductivity- 1GE+07
Albedom 6.7E-01

-1 -. 5 0.5
XfMU
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PRAMETERS (MKS)

Wave length- 1 .GE-05
kin- 1.OE-01
kh- 1.SE400

Optical Depth- 1.OE+00

IE?

:3 .33E5

3.3E5

1E5
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Figure 46. Angular Flux Patterns fc'r Various Conductivities
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